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Short Papers

A Simplified Formulation to Analyze Inhomogeneous complex~ plane by fixinga (or 3) and iterating on3 (or «) to

Waveguides With Lossy Chiral Media search for a complex frequency with a negligible imaginary part as
Using the Finite-Element Method an eigenvalue.

In this paper, the propagation constant of coupled slot lines

Luis Valor and Juan Zapata and coupled microstrips chirowaveguides, together with the analysis

versus chirality admittance, are presented.

Abstract—In this paper, an efficient finite-element formulation is I
presented for the analysis of the propagation characteristics in arbitrarily
shaped lossy inhomogeneous waveguides loaded with chiral media. It is A chiral medium is characterized by its constitutive relations. In

a simplified form of the one proposed in [1] for the bi-anisotropic media. thig paper, the Sihvola—Lindell relations are adopted:
In this formulation, showing no spurious modes, the frequency or the '

. THEORY

propagation constants may be treated as eigenvalues of a resulting sparse D=¢E— gﬁ
guadratic eigenproblem. However, in order to handle losses easily and o o N Q)
to facilitate computation of complex modes, the frequency is specified B=¢E+uH

as an input parameter and the eigensystem is solved for the complex . R .
propagation constant as the eigenvalue. This sparse eigensystem is furtherwhere D is the electric flux densityE the electric field,B the

transformed into a generalized one, thus maintaining the sparse proper- magnetic flux density, anH the magnetic field. The parameters:
ties of the matrices. New numerical finite-element results are presented. cotrs 11 = piopty are the permittivity and permeability, respectively,

Index Terms—Chiral medium, finite element, sparse eigensystem. &/J\/Folto = &/ \/Zolte the Pasteur parameter, afidthe chirality
admittance.

We consider a lossy waveguide with translation symmetry, arbi-
trarily shaped cross-sectionl in the z—y plane, inhomogeneously
;i_lled with chiral media, and bounded by elect(iE,) and magnetic

|. INTRODUCTION

A chiral medium is a particular case of bi-isotropic medium, chal I
acterized by linear constitutive relations which couple the electric aﬁEﬂ wals. free M I i in the d . d
magnetic field by three scalars [2]. Besides the potential application rom source-iree Viaxwell equations in the frequency domain an

in optical and suboptical frequencies, considerable interest has bgéﬁumlng that the electromagnetic field in the waveguide varies as

Fwt—vz) H : :
generated in isotropic chiral media. This interest is based on the » We can obtain the Helmhotz equation for the magnetic

existence of one additional parameter, the chirality admittence ield as .
that could make the practical designs more flexible. —VxVx H+ %jw{V « H— i/bﬁg?ﬁ —KpH=0 (2
In this paper, in order to obtain propagation constants and fields if~ Er Er

a chirowaveguide, we propose a method based on the finite-elemgith the boundary conditions termed as
method (FEM), which has no limitation concerning the cross-section

N r:_l & [ r—‘_l & =
shape of the waveguides. This cross section is divided into triangular nx (e VX H = jwe g 2 0 only ®)
hybrid vector elements as proposed in [3], which permit to solve nxH=0 only (4)
waveguides with reentrant corners and to eliminate the possibility o .
where w is the angular frequencyy = « + j3 the complex

the appearance of spurious modes, a{)ropagation constant, arig, the free-space wavenumber
The first formulation to solve chirowaveguides using the FEM wds Expressions (2)—(4) coincide with those proposed in [1] specified

proposed by Svedin [4]. It employed 6 degrees of freedom per poipt. . : :
The method proposed in this paper is formulated in terms of tE%r chiral media. By replacing
magnetic field and only one degree of freedom per point is used [3]. c— ey ﬁ
The discretization process leads to solve a sparse eigenvalue T e,
problem in which the frequency or the propagation constant can §&ew simplified formulation is obtained:
selected as an input parameter and the other one as an eigenvalue. . . L
However, when losses or complex modes are present in a waveguide, VXV xH= 2wtV x H— ke, H=0 (6)

thz prtopag;sltlotnh cor_lstant btecorn_te§ comfp}eﬁ (i +b. Thtl;s’ n _tThis expression can also be obtained from Post—Jaggard relations.
or le; 0 solve e.elgt;)entsy{(s. emt,hl |fs preterabie to Sweept € pos't'veApplying the Galerkin method to (6), splitting the trial functions
rea’ frequency axis by taking the frequency as an input parame g: the test functions?, and the operatoF into their transverse

and obtainingy as the eigenvalue, instead of sweeping the who hd axial parts, and using several vectorial identities, we obtain the
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Fig. 1. Matrices of the generalized eigensystem (a) before and (b) after {§§ 2 Normalized propagation constant versus chirality admittance for two
reordering of the matrices. coupled slotlines chirowaveguide. = 1.55 mm, hy +t = hy = 1.44
mm,t = 50 um, w = s = 0.2 mm,d = 0.22 mm, ey = 3.75,e2 = 1,
w1 = p2 = 1, f = 90 GHz. (— — —) even mode witl. = & and

. . & = 0, (—) odd mode withé, = & andé; = 0, (— —) even mode with
where we have imposed homogeneous boundary conditions (4) 0n- ¢, = ¢,, (- - - -) odd mode witht. = & = &.

magnetic walls and natural boundary conditions (3) on electric walls.
By discretizing the expression in (7) by hybrid finite elements as

described in [3], we can obtain an eigenvalue problem of the for . - . .
=l 9 P n]n order to obtain a more efficient generalized eigenvalue problem,

{HY(~*[A] 4+ ~[B] + [C] + yw[D] + w[E] + w’[F]) = 0.  (8) with narrower band matrix, the terms of the matrices are reordered,
. . L . . as described in [5], obtaining sparse matrices, as shown in Fig. 1(b).
The eigensystem is quadratic if both the input parameter is e final reordered generalized eigensystem
propagation constant and the eigenvalue is the frequency and vice

versa. However, for the reasons explained above, the frequency is [K{X} —y[M]{X}=0 (13)
taken as the input parameter and the eigensystem is solved for the

complex propagation constant as the eigenvalue. This leads tQyigh sparse narrow-band singular matrices is solved by the subspace

guadratic eigenvalue problem expressed as iteration algorithm.
(V[Mi] + 1[Ma] + [Ms){H} =0 Q) The f(_)rmulation proppsed in this paper ig substantially _simpler than
the equivalent expression that can be derived from the integral form
where [1, eq. (10)] when this is particularized for chiral media. It allows an
— [[T5] [0] easier implementation and a shorter computing time. In the particular
[Mi] = Z [0] 0] case where the chirality parameter vanishes, this formulation is then
- the same as the one proposed in [6] for isotropic media.
Ml =3 w[Ts] [Tﬂ
| [1] (0]
’ (7] — [T 7] Ill. NUMERICAL EXAMPLES
[Ms] = Z [ 1_w[}10] ¥ T3] f »1§[T~]} (10) The proposed formulation has been validated by analyzing a

e L

circular chirowaveguide presented in [4, Fig. 4], a rectangular

where the submatriceld;] are given in the Appendix. It must be chirowaveguide from [7, Fig. 3], and a partially loaded circular
pointed out that the matrices in (9) are sparse and, in a general lo§gjfowaveguide from [8, Fig. 2]. In all the cases, our results coincided
case, complex, non-Hermitian, and asymmetrical. Since there is @igatly with those of [4], [7], and [8].

public subroutine to directly solve this type of eigensystem, the sparseéther chirowaveguides such as coupled slotlines or coupled mi-

guadratic eigensystem (9) is transformed into a generalized one: crostrip on chiral ridges have been analyzed and the results are
presented in Figs. 2 and 3. In Fig. 2, two coupled slotlines chi-

[K]'{X} =y [M{X} =0 (11)  rowaveguides are shown. This figure presents the normalized phase
constant as a function of. for both even and odd modes. For

with double-dimension wide-band matrices, by settin - . . .
Y 9 & =& = & = 0 mS, our results coincide with those obtained in [9]

(K] = { o] [ } and [11]. It can be seen that the phase constant increases slightly with
[Ms] [M2] increasingt. = & andé; = 0. However, this effect is stronger when
o = {[I] [0] } there is c_hirality in regions | and Il simultaneously, = & = &e. _
- [0] —[Mi] Analysis has also been performed for two coupled microstrips on
. (") chiral ridges (Fig. 3). In this case, the phase constant also increases
X} = {{H}} (12) with ¢ being stronger if there is chirality in Regions | and II

simultaneously¢, = & = ., but this effect is smoother than in the
where{H} is an unknown vector. In Fig. 1(a), the terms that wouléxample above because the permittivity is bigger. In this example,
be necessary to store in order to solve this system are markedha results forf; = §& = & = 0 mS have a good agreement with
black. We can observe that the band of the mdti} is very large. the ones presented in [10].
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31 where
_ 0 -1 (Tp) . .
3.05 a‘:|: } T:{P} Nl = (N
@=1, To| m=[7y] Bl=o
a ON
T, T, (%5)
3 ~ = (G- Sy 1o)= [pd]
N: o op g (%)
= - - —
o 2.95 -
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