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Short Papers

A Simplified Formulation to Analyze Inhomogeneous
Waveguides With Lossy Chiral Media

Using the Finite-Element Method

Luis Valor and Juan Zapata

Abstract— In this paper, an efficient finite-element formulation is
presented for the analysis of the propagation characteristics in arbitrarily
shaped lossy inhomogeneous waveguides loaded with chiral media. It is
a simplified form of the one proposed in [1] for the bi-anisotropic media.
In this formulation, showing no spurious modes, the frequency or the
propagation constants may be treated as eigenvalues of a resulting sparse
quadratic eigenproblem. However, in order to handle losses easily and
to facilitate computation of complex modes, the frequency is specified
as an input parameter and the eigensystem is solved for the complex
propagation constant as the eigenvalue. This sparse eigensystem is further
transformed into a generalized one, thus maintaining the sparse proper-
ties of the matrices. New numerical finite-element results are presented.

Index Terms—Chiral medium, finite element, sparse eigensystem.

I. INTRODUCTION

A chiral medium is a particular case of bi-isotropic medium, char-
acterized by linear constitutive relations which couple the electric and
magnetic field by three scalars [2]. Besides the potential applications
in optical and suboptical frequencies, considerable interest has been
generated in isotropic chiral media. This interest is based on the
existence of one additional parameter, the chirality admittance�c,
that could make the practical designs more flexible.

In this paper, in order to obtain propagation constants and fields in
a chirowaveguide, we propose a method based on the finite-element
method (FEM), which has no limitation concerning the cross-section
shape of the waveguides. This cross section is divided into triangular
hybrid vector elements as proposed in [3], which permit to solve
waveguides with reentrant corners and to eliminate the possibility of
the appearance of spurious modes.

The first formulation to solve chirowaveguides using the FEM was
proposed by Svedin [4]. It employed 6 degrees of freedom per point.
The method proposed in this paper is formulated in terms of the
magnetic field and only one degree of freedom per point is used [3].

The discretization process leads to solve a sparse eigenvalue
problem in which the frequency or the propagation constant can be
selected as an input parameter and the other one as an eigenvalue.
However, when losses or complex modes are present in a waveguide,
the propagation constant becomes complex:
 = � + j�. Thus, in
order to solve the eigensystem, it is preferable to sweep the positive
real frequency axis by taking the frequency as an input parameter,
and obtaining
 as the eigenvalue, instead of sweeping the whole
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complex 
 plane by fixing� (or �) and iterating on� (or �) to
search for a complex frequency with a negligible imaginary part as
an eigenvalue.

In this paper, the propagation constant of coupled slot lines
and coupled microstrips chirowaveguides, together with the analysis
versus chirality admittance, are presented.

II. THEORY

A chiral medium is characterized by its constitutive relations. In
this paper, the Sihvola–Lindell relations are adopted:

~D = "~E� � ~H

~B = �~E+ �~H
(1)

where ~D is the electric flux density,~E the electric field, ~B the
magnetic flux density, and~H the magnetic field. The parameters" =
"o"r, � = �o�r are the permittivity and permeability, respectively,
�=j

p
"o�o = ��c=

p
"o�o the Pasteur parameter, and�c the chirality

admittance.
We consider a lossy waveguide with translation symmetry, arbi-

trarily shaped cross-section
 in the x–y plane, inhomogeneously
filled with chiral media, and bounded by electric(�1) and magnetic
(�2) walls.

From source-free Maxwell equations in the frequency domain and
assuming that the electromagnetic field in the waveguide varies as
e(j!t�
z), we can obtain the Helmhotz equation for the magnetic
field as
1

"r
r�r� ~H+

2

"r
j!�r� ~H� 1

"r
!
2
�
2 ~H� k

2
o�r ~H = 0 (2)

with the boundary conditions termed as

n̂� ("
�1r� ~H� j!"

�1
�~H) =0 on �1 (3)

n̂� ~H =0 on �2 (4)

where ! is the angular frequency,
 = � + j� the complex
propagation constant, andko the free-space wavenumber.

Expressions (2)–(4) coincide with those proposed in [1] specified
for chiral media. By replacing

"r = "
0

r +
��2c
"o

(5)

a new simplified formulation is obtained:

r�r� ~H� 2!��cr� ~H� k
2
o"

0

r
~H = 0 (6)

This expression can also be obtained from Post–Jaggard relations.
Applying the Galerkin method to (6), splitting the trial functions

~H, the test functions~w, and the operatorr into their transverse
and axial parts, and using several vectorial identities, we obtain the
following expression:

1

"0r 


(rt � ~wt)(rt � ~Ht) +rtwz � [rtHz + 
Ĥt]

+ ~wt �
 + 2!�r�c"
0

r rtHz

� 

2 � 2!
��c"

0

r�a+ k
2
o�r ~Ht

+ wz ẑ �2!�r"0r�r�crt �Ht � k
2
o ��"

0

r ẑHz d
 = 0 (7)

0018–9480/98$10.00 1998 IEEE



186 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 2, FEBRUARY 1998

(a)

(b)

Fig. 1. Matrices of the generalized eigensystem (a) before and (b) after the
reordering of the matrices.

where we have imposed homogeneous boundary conditions (4) on
magnetic walls and natural boundary conditions (3) on electric walls.

By discretizing the expression in (7) by hybrid finite elements as
described in [3], we can obtain an eigenvalue problem of the form

fHg(
2[A] + 
[B] + [C] + 
![D] + ![E] + !
2[F ]) = 0: (8)

The eigensystem is quadratic if both the input parameter is the
propagation constant and the eigenvalue is the frequency and vice
versa. However, for the reasons explained above, the frequency is
taken as the input parameter and the eigensystem is solved for the
complex propagation constant as the eigenvalue. This leads to a
quadratic eigenvalue problem expressed as

(
2[M1] + 
[M2] + [M3])fHg = 0 (9)

where

[M1] =
e

[T3] [0]
[0] [0]

[M2] =
e

![T9] [T4]
[T2] [0]

[M3] =
e

[T1] � !2[T6] �![T8]
�![T10] [T5]� !2[T7]

(10)

where the submatrices[Ti] are given in the Appendix. It must be
pointed out that the matrices in (9) are sparse and, in a general lossy
case, complex, non-Hermitian, and asymmetrical. Since there is no
public subroutine to directly solve this type of eigensystem, the sparse
quadratic eigensystem (9) is transformed into a generalized one:

[K]0fXg0 � 
[M ]0fXg0 = 0 (11)

with double-dimension wide-band matrices, by setting

[K]0 =
[0] [I]
[M3] [M2]

[M ]0 =
[I] [0]
[0] �[M1]

fXg0 =
fHg
f �Hg

(12)

wheref �Hg is an unknown vector. In Fig. 1(a), the terms that would
be necessary to store in order to solve this system are marked in
black. We can observe that the band of the matrix[K]0 is very large.

Fig. 2. Normalized propagation constant versus chirality admittance for two
coupled slotlines chirowaveguide.a = 1:55 mm, h1 + t = h2 = 1:44

mm, t = 50 �m, w = s = 0:2 mm, d = 0:22 mm, "1 = 3:75, "2 = 1,
�1 = �2 = 1, f = 90 GHz. (— – —) even mode with�c = �1 and
�2 = 0, (—) odd mode with�c = �1 and �2 = 0, (– –) even mode with
�c = �1 = �2, (- - - -) odd mode with�c = �1 = �2.

In order to obtain a more efficient generalized eigenvalue problem,
with narrower band matrix, the terms of the matrices are reordered,
as described in [5], obtaining sparse matrices, as shown in Fig. 1(b).
The final reordered generalized eigensystem

[K]fXg � 
[M ]fXg = 0 (13)

with sparse narrow-band singular matrices is solved by the subspace
iteration algorithm.

The formulation proposed in this paper is substantially simpler than
the equivalent expression that can be derived from the integral form
[1, eq. (10)] when this is particularized for chiral media. It allows an
easier implementation and a shorter computing time. In the particular
case where the chirality parameter vanishes, this formulation is then
the same as the one proposed in [6] for isotropic media.

III. N UMERICAL EXAMPLES

The proposed formulation has been validated by analyzing a
circular chirowaveguide presented in [4, Fig. 4], a rectangular
chirowaveguide from [7, Fig. 3], and a partially loaded circular
chirowaveguide from [8, Fig. 2]. In all the cases, our results coincided
greatly with those of [4], [7], and [8].

Other chirowaveguides such as coupled slotlines or coupled mi-
crostrip on chiral ridges have been analyzed and the results are
presented in Figs. 2 and 3. In Fig. 2, two coupled slotlines chi-
rowaveguides are shown. This figure presents the normalized phase
constant as a function of�c for both even and odd modes. For
�1 = �2 = �c = 0 mS, our results coincide with those obtained in [9]
and [11]. It can be seen that the phase constant increases slightly with
increasing�c = �1 and�2 = 0. However, this effect is stronger when
there is chirality in regions I and II simultaneously,�1 = �2 = �c.

Analysis has also been performed for two coupled microstrips on
chiral ridges (Fig. 3). In this case, the phase constant also increases
with �c being stronger if there is chirality in Regions I and II
simultaneously,�1 = �2 = �c, but this effect is smoother than in the
example above because the permittivity is bigger. In this example,
the results for�1 = �2 = �c = 0 mS have a good agreement with
the ones presented in [10].
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Fig. 3. Normalized propagation constant versus chirality admittance for a
coupled microstrips on chiral ridgesw = 0:1 mm, h = 0:1 mm, d = 0:05,
a = 1:3 mm,b = 2:51 mm,s = :3 mm,"1 = 12:85, "2 = 1, �1 = �2 = 1,
f = 90 GHz. (— – —) even mode with�c = �1 and�2 = 0, (—) odd mode
with �c = �1 and �2 = 0, (– –) even mode with�c = �1 = �2, (- - - -)
odd mode with�c = �1 = �2.

IV. CONCLUSION

In this paper, a simplified finite-element formulation for solving
arbitrarily shaped waveguides including lossy inhomogeneous chiral
media has been proposed. It is a simplified form of the one proposed
in [1] for the bi-anisotropic media. Spurious-mode suppression is also
achieved. In order to facilitate the analysis of waveguides, which
can support complex modes and/or have losses, the frequency is
introduced as the input parameter to obtain the complex propaga-
tion constant as the result. The formulation leads to a quadratic
eigenvalue problem, which is transformed into a double-dimension
generalized one. After a reordering, the eigensystem is solved by
the subspace method, taking full advantage of the sparsity of the
matrices. The proposed method has been validated by analyzing
various chirowaveguides. Some new results have also been presented.

APPENDIX

In this paper, the submatrices[Ti] are given by

[T1] =
e

[A]T [A] dp dq

[T2] =
e

[D]T [T ] dpdq

[T3] =
e

[T ]T [T ] dpdq

[T4] =
e

[T ]T [D] dpdq

[T5] =
e

[D]T [D] dpdq

[T6] =
e

�"o[T ]
T [T ] dpdq

[T7] =
e

�"o[N ]T [N ] dpdq

[T8] =
e

2�r�c[T ]T [�a][D] dpdq

[T9] =
e

2�r�c[T ]T [�a][T ] dpdq

[T10] =
e

2�r�c[N ]T [A] dpdq

where

[�a] =
0 �1
1 0

[T ] =
hTpi
hTqi

[N ] = hNii

[A] =
@Tq

@p
�

@Tp

@q
[D] =

@N

@p
@N

@q

:
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